Screen Link: https://app.dataquest.io/m/348/guided-project%3A-clean-and-analyze-employee-exit-surveys/6/create-a-new-column
My Code:
dete_resignations['cease_date'].value_counts(dropna=False).sort_index()
Output :
2006.0 1
2010.0 2
2012.0 129
2013.0 146
2014.0 22
NaN 11
Name: cease_date, dtype: int64
dete_resignations['dete_start_date'].value_counts(dropna=False).sort_index()
Output :
1963.0 1
1971.0 1
1972.0 1
1973.0 1
1974.0 2
1975.0 1
1976.0 2
1977.0 1
1980.0 5
1982.0 1
1983.0 2
1984.0 1
1985.0 3
1986.0 3
1987.0 1
1988.0 4
1989.0 4
1990.0 5
1991.0 4
1992.0 6
1993.0 5
1994.0 6
1995.0 4
1996.0 6
1997.0 5
1998.0 6
1999.0 8
2000.0 9
2001.0 3
2002.0 6
2003.0 6
2004.0 14
2005.0 15
2006.0 13
2007.0 21
2008.0 22
2009.0 13
2010.0 17
2011.0 24
2012.0 21
2013.0 10
NaN 28
Name: dete_start_date, dtype: int64
tafe_resignations['cease_date'].value_counts(dropna=False).sort_index()
Output:
2009.0 2
2010.0 68
2011.0 116
2012.0 94
2013.0 55
NaN 5
What should be done to the NaN values here?
Should we straight away drop those rows? Is there a better way?
Thanks!