Predicting bike rentals, not quite complete

Basics (15).ipynb (25.1 KB)

To complete my project I wanted to further refine the predictions.
To do so, I am trying to for loop through pruning to find the best values (within reason)

def adjustmant_(model):[columns],train[target])
    prediction1 = model.predict(test[columns])
    # mean absolute error, (true, predicted)
    return mae_(test[target], prediction1) 

mae_list = []
for a in range(100):
    margin = adjustmant_(RandomForestRegressor(max_depth=1+a, 
max_ = max(mae_list)
print([index for index,value in enum(mae_list)if value == max_])    

but I am getting a function error.

TypeErrorTraceback (most recent call last)
<ipython-input-13-288a407c9260> in <module>()
      8 for a in range(100):
      9     margin = adjustmant_(RandomForestRegressor(max_depth=1+a, 
---> 10                                        min_samples_split=2))
     11     mae_list.append(margin)
     12 max_ = max(mae_list)

<ipython-input-13-288a407c9260> in adjustmant_(model)
      1 def adjustmant_(model):
----> 3     prediction1 = model.predict(test[columns])
      4     # mean absolute error, (true, predicted)
      5     return mae_(test[target], prediction1)

TypeError: 'function' object is not subscriptable

Click here to view the jupyter notebook file in a new tab

1 Like

Hi @westlundderek,

I ran your code from start and I haven’t received TypeError: 'function' object is not subscriptable. Instead, I received NameError: name 'enum' is not defined, which can be fixed by changing enum to enumerate.