Zubair
November 14, 2019, 10:56am
#1
This an easy, effective and tricky project. I have just completed this project using percent-bachelors-degrees-women-usa dataset. You may check the project by following the link.
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here, Only the 6 STEM categories are plotted for 18 different degrees. "
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABBsAAADSCAYAAAAL6sirAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Wd0VNXXgPFn0uuEFFIIIQkBQkekFyH0phRRilJU9I8K\nKmIBX0XAAgiKioIiSpEmiEqRqqBUARHpRWkJJBAISUivc94P10wypBBSmJT9WytL59Yzw557z91z\nik4ppRBCCCGEEEIIIYQoIRbmLoAQQgghhBBCCCEqFkk2CCGEEEIIIYQQokRJskEIIYQQQgghhBAl\nSpINQgghhBBCCCGEKFGSbBBCCCGEEEIIIUSJkmSDEEIIIYQQQgghSpQkG0rZ5cuX0ev1mGOG0RUr\nVtCzZ897fl4hStKePXuoV6+euYshyqFOnTqxcOHCIu0bGBjIjh07SrhEorJ77rnneP/99wu1rYWF\nBRcuXCjlEomyrjjXsfzcTRzmZ+fOnfj5+ZVQibI5Oztz6dKlEj+uKFuWLFnCAw88YJZzT506leHD\nh5vl3AC9e/dm6dKld71fea0PS7Ihh4CAABwcHNDr9Tg7O6PX63nxxReLdUw/Pz/i4uLQ6XQlVMrC\ne+yxx9iyZcs9P68o2IoVK2jRogXOzs74+vrSp08f9u7da+5imSitSsS0adOoWbMmer2eGjVqMHTo\n0Dvu0759e06fPl3iZRHmk/Na6+Pjw5NPPklSUpK5iyVEicgZ3+7u7jz00EOEh4cD8MUXX/Dmm28W\n6jjmqDcI87jX18S7icOCFBSj69ato2nTplSpUgVPT0+6du1KaGjoHY8ZHx9PQEBAscsmSkZAQAB2\ndnZER0ebLG/atCkWFhaEhYXd8RihoaFYWFhgMBhMlpvzGlfQuQuqq95t8m/q1KmMGDHCZNmmTZsK\nley4PeFcXuvDkmzIQafTsXHjRuLi4oiPjycuLo45c+aYu1hFkpmZae4iiDzMnj2b8ePH89Zbb3H9\n+nXCwsIYM2YMGzZsMHfRTCilinUTyCv+lixZwvLly9mxYwdxcXEcOnSILl26FKeYopzKea09fPgw\nhw4d4r333jN3sYQoETnj++rVq3h6evLCCy/c9XHM0SJSmEdFuyaeP3+ekSNH8vHHHxMbG8vFixcZ\nM2YMlpaW5i6auEs6nY7AwEBWrlxpXHbixAmSk5MLXU/MqlOWh2taWaqrVpSEsyQbbpPXFyGrqc9r\nr72Gm5sbQUFBJi0GLl26RMeOHXFxcaF79+6MHTvWmLG6PZvXqVMn3n77bdq3b49er6dnz54m2cL9\n+/fTrl07XF1dadq0KTt37jSui4uL4+mnn6ZatWr4+fkxadIkY3mXLFlC+/btGT9+PB4eHkydOjVX\nEyULCwvmz59PnTp1cHNzY+zYscZ1BoOBV155hapVqxIUFMTcuXPzzEKKoouLi2Py5MnMmzePfv36\nYW9vj6WlJb1792bGjBkApKWlMW7cOHx9falevTovv/wy6enpQHZrg1mzZuHp6Ymvry9r165l8+bN\n1KlTBw8PD+NxQMumPvroowwZMgS9Xk/z5s05duyYcf3tGdMnn3ySt99+m6SkJHr37k1ERISxhc+1\na9dQSjFjxgxq1apF1apVGTJkCLGxsUB2nC9cuBB/f/88L8yHDh2iR48exl8sPD09efrpp43rY2Ji\neOqpp/D19cXd3Z2HH37Y5H1nuXr1Ko888gienp4EBQXx2WefmbznwYMHM3LkSPR6PY0aNeLw4cPG\n9VeuXGHgwIF4enpStWpVk5ZLCxcupH79+ri7u9OrV69CZetF0WVdu3x8fOjVqxcnTpxgyZIlBAUF\nodfrCQoKYuXKlaSnp+Pu7s7JkyeN+964cQNHR0du3rwJZP+C5uLiQu3atdm2bZtx20uXLuV7vV2/\nfj0NGzbEzc2Nzp07c+bMmTzLWtD3EmDmzJlUq1aN6tWr88033xi/W4cOHcLb29vkvvLjjz9y3333\nlcyHKMqsrH9zGxsbHnnkEU6dOgVkX2ezLFiwgNq1a+Ph4UH//v25evVqnseLi4tjxIgReHp6EhgY\naNIEvqD795o1a2jevLnJsWbPns2AAQNK+i2LYsrrmpglv+vYgw8+yNy5c02O06RJE9atWwfAyy+/\njJeXFy4uLjRp0iTfOMzvGrp48WLq16+PXq+nVq1afPXVV4V6L0eOHKFmzZqEhIQA4OjoyIABA6he\nvTqgxey0adOoVasWLi4utGjRwtj6J2fdJC0tjVdffRV/f398fHx4/vnnSU1NBbLrBrNnz8bLywtf\nX18WL15sLENKSgqvvPIKAQEBuLq60qFDB+O+BdW1Fy9enOs+VNkNHz6cJUuWGF8vWbKEkSNHmmyz\nadMm7r//flxcXPD392fq1KnGdR07dgSgSpUq6PV6Dhw4AGgxn9+z1e0++OADatWqhV6vp2HDhqxd\nu9akPHd6TgsJCcHFxYUePXoQFRWV73kKqqu+9dZb7N69m7Fjx5q0fh83bhw1atQwxvKePXsA2Lp1\nK9OmTWPVqlU4OzvTtGlTwLR1xPnz5wkJCTG2AMpqRdGxY0eUUjRu3Bi9Xs/333+fqz6cX502v2Oa\njRJGAQEBavv27bmWL168WNnY2KhvvvlGGQwG9cUXX6hq1aoZ17dp00a9/vrrKj09Xe3Zs0fp9Xo1\nfPhwpZRSly5dUhYWFiozM1MppVRISIiqVauWOnfunEpJSVEhISHqjTfeUEopdeXKFeXu7q62bNmi\nlFLq119/Ve7u7ioqKkoppVT//v3Vc889p5KTk9WNGzdUq1at1FdffWUso5WVlZo7d67KzMxUKSkp\navHixeqBBx4wllOn06mHHnpIxcXFqbCwMFW1alW1detWpZRSX3zxhWrQoIGKiIhQsbGxqmvXribl\nFsW3ZcsWZW1tXeBnOmnSJNWmTRsVFRWloqKiVNu2bdXbb7+tlFLq999/V1ZWVuq9995TGRkZasGC\nBcrDw0M99thjKjExUZ08eVLZ29urS5cuKaWUmjJlirKxsVE//vijysjIUB9++KEKDAxUGRkZSiml\nLCws1Pnz543nfuKJJ9SkSZOM5/Lz8zMp2yeffKLatGmjIiIiVFpamnr22WfV0KFDlVJanOt0OjVy\n5EiVlJSkUlJScr23ZcuWKXd3dzVr1ix16NChXJ9D79691ZAhQ9StW7dURkaG2rVrV66yGAwG1axZ\nM+NncPHiRRUUFKS2bdtmfM/29vZqy5YtymAwqDfeeEO1bt1aKaVUZmamatKkiXrllVdUcnKySk1N\nVXv37lVKKbV27VpVu3ZtdfbsWZWZmanef/991bZt2zv+m4qiyXmtDQsLUw0aNFCvv/660uv16t9/\n/1VKKXXt2jV16tQppZRSY8aMURMnTjTu/+mnn6q+ffsqpZQ6cOCAcnFxMR4vIiJCnT17VilV8PX2\n7NmzytHRUW3fvl1lZGSomTNnqlq1aqn09PRcZSzoe7l582bl4+OjTp8+rZKTk9WwYcNMvlsNGjQw\nXtOVUmrAgAHq448/LoVPVZQVOWMnMTFRjRw5Uj3xxBNKKdPr7Pbt25WHh4c6cuSISktLUy+88ILq\n0KGD8Tg6nc4YR8OHD1f9+/dXiYmJ6tKlS6pOnTpq4cKFSqmC79+pqanK3d1dnTlzxnjcpk2bqp9+\n+umefBaicPK6Jk6ePFkpVfB1bPXq1apVq1bG4xw5ckR5eHio9PR0tXXrVtW8eXMVFxenlFLqzJkz\n6tq1a0op0zgs6Bq6adMmdfHiRaWUUrt27VIODg7q77//VkrlXU/IcuHCBWVvb69efvll9dtvv6mE\nhAST9TNnzlSNGzc2Xu+PHTumoqOjlVKmdZNx48apfv36qdjYWJWQkKD69u2r/u///s94fisrKzVl\nyhSVkZGhNm3apBwcHFRsbKxSSqnnn39ederUSV29elUZDAb1xx9/qLS0NBUeHp5vXTsxMTHf+1Bl\nlRWbdevWVWfOnFGZmZnKz89PhYWFKZ1Op0JDQ5VSSu3cuVOdOHFCKaXU8ePHlbe3t1q3bp1SKvtZ\nyGAwGI+7ePFiZW1tne+z1e3WrFljjN/Vq1crR0dH4+vCPKe9+uqrKi0tTe3atUs5Ozsbn9Nud6e6\nakhIiPrmm29Mli1fvlzFxMSozMxMNXv2bOXt7a1SU1OVUlq99PZz5TzG0KFD1bRp05RSyqReqpR2\nD7hw4YLxdc7vXEF12oKOaQ6SbMghICBAOTs7K1dXV1WlShXl6uqqvv76a7V48WJVu3Zt43ZJSUlK\np9OpyMhIFRYWpqytrVVycrJx/bBhwwpMNrz//vvGbefNm6d69eqllFLqgw8+UCNGjDApU48ePdS3\n336rIiMjla2trclD3MqVK1WnTp2UUtoXzd/f32TfvJIN+/btM74eNGiQ+uCDD5RSSnXu3NmYuFBK\nu/hKsqFkLV++XPn4+BS4TVBQkMmDydatW1VgYKBSSrvIODg4GC/W8fHxSqfTqT///NO4fbNmzYwX\n9ylTpqg2bdoY1xkMBuXj46P27NmjlDKtyCp152RDvXr11I4dO4yvIyIijMmTrDjPSnTkZ8WKFa
This file has been truncated. show original